Data Attribution and Optimization for Data-Efficient AI

Xiaoqiang Lin July 4th 2025 @ SJTU

Data Consumption VS Data Production

- Data consumption grows faster than production.
- Increase model does not improve performance proportionally.

We will run out of data stock here! [1]

[1] Villalobos, P., Ho, A., Sevilla, J., Besiroglu, T., Heim, L., & Hobbhahn, M. (2024, July). Position: Will we run out of data? Limits of LLM scaling based on human-generated data. ICML 2024.

Agenda

Optimizing data at model training:

- FreeShap: Data Attribution for LLM Fine-tuning, ICML 2024
- NICE: Data Attribution for Non-differentiable Metrics, ICML 2025

Optimizing data at model inference:

- INSTINCT: Black-box Prompt Optimization, ICML 2024
- POHF: Prompt Optimization with Human Feedback, ICML workshop 2024

Helpful or Harmful Data? Fine-tuning-free Shapley Attribution for Explaining Language Model Predictions.

Jingtan Wang*, Xiaoqiang Lin*, Rui Qiao*, Chuan-Sheng Foo, Bryan Kian Hsiang Low.

ICML 2024.

Motivation

The Data Value / Data Contribution

The leave-one-out (LOO) value of the -th data point: (~influence function) Marginal contribution of i for the whole dataset

$$\xi_i = U(N) - U(N \setminus \{i\})$$

The Shapley value of the i-th data point:

$$\phi_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(|N| - |S| - 1)!}{|N|!} (U(S \cup \{i\}) - U(S))$$

Marginal contribution of i for
the subset

Preliminaries

• The harm of the mislabeled data is magnified when the dataset has a smaller size.

• The Shapley value is better at detecting mislabeled data because of the consideration of the smaller subsets.

Motivation: Shapley Value is More Effective The Shapley Value

The Shapley value is much better at identifying mislabeled data than LOO values

[Ghorbani and Zou, 2019]

Methodology: Shapley Value is More Robust

 Place the same text sample into different training datasets and evaluate their instance scores

- Compared with LOO, Shapley value can output helpfulness/harmfulness consistently
 - Usefulness in one dataset is generalizable to other datasets

Text example	Label	Shap	Shapley score	L00	LOO score
confident filmmaking and a pair of fascinating performances	[pos]	5+/0-	0.45 ± 0.23	3+/2-	0.23 ± 1.52
seriously, rent the Disney version	[neg]	5+/0-	$1.85 {\pm} 0.72$	3+/2-	-0.70 ± 2.36
it's not going to be everyone's bag of popcorn, but it definitely gives you something to chew on'	[pos]	0+/5-	-1.91 ± 0.57	3+/2-	0.23 ± 1.34
would fit chan like a \$ 99 bargain-basement special	[neg]	0+/5-	-0.36 ± 0.20	2+/3-	0.00 ± 1.45

Challenge of SV in Large Models Training Computational Scalability

- The naive evaluation of the utility function requires fine-tuning a (large) pretrained model on the subset, then evaluate the model's performance.
- Repeated fine-tuning are extremely costly.

Solution

The Empirical "Kernel" Trick

$$\Psi = \begin{bmatrix} \nabla_{\theta} f(x_{1})^{\top} \\ \nabla_{\theta} f(x_{2})^{\top} \\ \nabla_{\theta} f(x_{3})^{\top} \\ \vdots \\ \nabla_{\theta} f(x_{n})^{\top} \end{bmatrix} \qquad \qquad K = \begin{pmatrix} \nabla_{\theta} f(x_{1})^{\top} \nabla_{\theta} f(x_{1}) & \nabla_{\theta} f(x_{1})^{\top} \nabla_{\theta} f(x_{2}) & \cdots \\ \nabla_{\theta} f(x_{2})^{\top} \nabla_{\theta} f(x_{1}) & \nabla_{\theta} f(x_{2})^{\top} \nabla_{\theta} f(x_{2}) & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

empirical Neural Tangent Feature empirical Neural Tangent Kernel (eNTK)

Prior work: Kernel regression on the eNTK resembles fine-tuning.

Fine-tuning-free Shapley Value

FreeShap amortizes the fine-tuning cost by pre-computing the eNTK matrix, then calculates the utility terms of the Shapley value using models obtained from kernel regressions.

FreeShap

Fine-tuning-free Shapley Value

FreeShap

Efficiency

• FreeShap is significantly faster than other approximated Shapley value baselines.

٦	Dataset	SST-2
	Model	BERT

Data Curation: Wrong Label Detection

- Poison training set by flipping 10% of data, and then examine the poisoned data by reviewing data points in the order of their scores from lowest to highest.
- Shapley excels in detecting mislabeled data within datasets.

Data Selection

- Setting: A train set, a test set for calculating training point scores, and a *held-out* set evaluating the selected subsets.
- Sequentially add training data points with the highest scores.
- The higher the performance increase, the better the data curation approach is.
- Shapley value is also effective for data curation when test distribution is unknown.

		BERT						
2000		2%	4%	6%	8%	10%		
	Shapley	0.1951	0.2111	0.2148	0.2167	0.2223		
1	Influence	0.0272	0.0647	0.0393	0.0647	0.0750		
	TracIn	0.1370	0.1904	0.2008	0.1548	0.1970		
	Representer	0.1182	0.1351	0.1388	0.0619	0.1238		
	Random	0.1970	0.1951	0.2073	0.2017	0.1529		

Llama2							
	2%	4%	6%	8%	10%		
Shapley	0.0816	0.1398	0.1754	0.2186	0.2458		
Influence	-0.0038	-0.0038	-0.0038	-0.0038	-0.0038		
TracIn	0.0638	0.1144	0.1304	0.1773	0.2092		
Representer	-0.0019	0.0000	0.0019	0.0066	0.0056		
Random	0.0638	0.1041	0.1529	0.1792	0.1951		

Summary

- FreeShap provides an efficient and scalable approximation of the Shapley value.
- FreeShap demonstrates strong capability in mislabeled data detection, advancing data diagnostics, which can be used to increase model reliability.

NICE: Non-differentiable Evaluation Metric-based Data Selection for Instruction Tuning.

Jingtan Wang, Xiaoqiang Lin, Rui Qiao, Pang Wei Koh, Chuan-Sheng Foo, Bryan Kian Hsiang Low.

ICML 2025.

Motivation

Loss-based influence (TracIn, Influence function, etc.) estimates the effect of each training data on the validation loss via the gradient of the validation loss.

- Discrepancy Between Loss and Evaluation Metrics
- Reliance on Labeled Validation Data

NICE: Non-differentiable evaluation metrics-based InfluenCe Estimation

Instead of using validation loss, we use $L_r(z_v; \theta) = \mathbb{E}_{\hat{y}_v \sim f(y|x_v; \theta)}[-r(z_v, \hat{y}_v)]$,

Quantify the influence of including a training point z_i on the a validation point $\overline{\text{os}}z_v$'s performance measured by a non-differentiable evaluation metric **r**

• Code pass rate, math correct rate

computed w.r.t final checkpoints

• Reward model

TracIn

$$Inf_{NICE} = \sum_{e=1}^{E} \overline{\bar{\eta}_{e}} \nabla_{\theta} L(z_{i}; \theta^{e}), \mathbb{E}_{\hat{y}_{v} \sim f(y|x_{v}; \theta^{e})} [-\nabla_{\theta} \log(f(\hat{y}_{v}|x_{v}; \theta^{e}))r(z_{v}, \hat{y}_{v})] \rangle$$

$$across checkpoints \quad Validation point's policy gradients w.r.t. eval metrics$$

Influence function

 $Inf_{NICE_{IF}} = \mathbb{E}_{\hat{y}_{v} \sim f(y|x_{v};\theta^{E})} \left[-\nabla_{\theta} \log \left(f(\hat{y}_{v}|x_{v};\theta^{E}) \right) r(z_{v},\hat{y}_{v}) \right]^{T} H_{\theta^{E}}^{-1} \nabla_{\theta} L(z_{i};\theta^{E})$

Training point's gradients and Hessians w.r.t. loss

Validation point's **policy gradients** w.r.t. eval metrics

NICE: Non-differentiable evaluation metrics-based InfluenCe Estimation

Approximated via Monte-Carlo Sampling

 $Inf_{NICE} = \sum_{e=1}^{E} \overline{\bar{\eta}_{e}} \left[\nabla_{\theta} L(z_{i}; \theta^{e}), \mathbb{E}_{\hat{y}_{v} \sim f(y|x_{v}; \theta^{e})} \left[-\nabla_{\theta} \log(f(\hat{y}_{v}|x_{v}; \theta^{e})) r(z_{v}, \hat{y}_{v}) \right] \right]$ across checkpoints Validation point's **policy gradients** w.r.t. eval metrics

NICE: Non-differentiable evaluation metrics-based InfluenCe Estimation

$$Inf_{NICE_{IF}} = \mathbb{E}_{\hat{y}_{v} \sim f(y|x_{v};\theta^{E})} \left[-\nabla_{\theta} \log(f(\hat{y}_{v}|x_{v};\theta^{E})) r(z_{v},\hat{y}_{v}) r' H_{\theta^{E}}^{-1} \nabla_{\theta} L(z_{i};\theta^{E}) \right]$$

computed w.r.t final checkpoints
Validation point's **policy gradients** w.r.t. eval metrics

·····

- NICE Preferred training points: Those whose gradient are most similar to the policy gradients of the validation performance measured by the reward function r, i.e., those training points can improve the validation performance more
- When r does not require the the ground truth label y (reward model which only needs prompts x_y and generated response \hat{y}_v) → NICE can output score without need of validation label!

Generalization to Other Loss-based Influence Estimation Methods:

Method	AlpacaEval	TLDR	RLHF	HumanEval
IF (DataInf)	11.11	2.01	0.83	37.40
NICEIF	20.44	3.97	1.89	39.68

NICEIF consistently outperforms Vanilla Influence Function

Assisted Monte Carlo

Benefit of Monte-Carlo Sampling used in NICE: Utilizing multiple different responses, offering diverse guidance. The generated response can be better than the label response

Limitation: When the model is too weak, the MC samples may not contain high-quality responses with high rewards

Solution: Assisted Monte Carlo (AMC) uses a model that is better at the target task to assist generation

 $Inf_{NICE_{AMC}} = \sum_{e=1}^{E} \bar{\eta}_{e} \langle \nabla_{\theta} L(z_{i}; \theta^{e}), \mathbb{E}_{\hat{y}_{v}^{*} \sim g(y|x_{v};\psi)} \left[-\nabla_{\theta} \log \left(f(\hat{y}_{v}^{*}|x_{v}; \theta^{e}) \right) r(z_{v}, \hat{y}_{v}^{*}) \right] \rangle$

Experimental Results

Major Findings:

- NICE outperforms the loss-based influence estimation.
- No labels? No problem! NICE outperform baselines that utilize the label response.
- Less is more: subset outperforms the full dataset.
- Assisted monte-carlo sampling can boost data selection when the size of training data is large (task-agnostic setting).

Model &	k Dataset	Full	Random	RDS	BM25	DSIR	TSDS	LESS	NICE	NICEAMC
Task-agnosti	c									
	AlpacaEval	22.59	$16.13_{\pm 1.18}$	14.70	19.60	20.27	$17.40_{\pm 2.44}$	$26.94_{\pm 2.37}$	$27.61_{\pm 2.13}$	$\underline{30.45}_{\pm 2.40}$
Lioma 7 7P	TLDR	2.40	$1.80_{\pm 0.08}$	2.08	2.15	1.53	$2.19_{\pm0.29}$	$3.37_{\pm 0.29}$	$\underline{3.61}_{\pm 0.78}$	$3.55_{\pm 0.40}$
Liailia2-7D	RLHF	2.31	$2.05_{\pm 0.11}$	1.87	2.83	2.57	$1.01_{\pm 0.12}$	$1.44_{\pm 0.07}$	2.82 ± 0.10	$3.03_{+0.02}$
	HumanEval	47.44	$44.30_{\pm 2.36}$	45.29	46.19	42.22	$43.68_{\pm 1.82}$	$47.50_{\pm 1.57}$	$\underline{48.59}_{\pm 2.08}$	$45.10_{\pm 2.84}$
	AlpacaEval	33.77	$24.99_{\pm 4.28}$	21.70	28.47	29.31	$35.84_{\pm 0.53}$	$41.09_{\pm 1.56}$	$41.43_{\pm 3.00}$	$47.40_{\pm 2.94}$
Mistral 7D	TLDR	2.79	$3.06_{\pm 0.24}$	2.90	2.41	3.48	$3.28_{\pm0.41}$	$4.40_{\pm 0.12}$	$\underline{4.80}_{\pm 0.12}$	4.59 ± 0.20
wiisuai-7D	RLHF	2.56	$2.13_{\pm 0.04}$	1.78	2.88	2.94	$1.83_{\pm 0.15}$	$1.70_{\pm 0.09}$	$3.10_{\pm 0.06}$	$\underline{3.42}_{\pm 0.05}$
	HumanEval	83.63	$85.56_{\pm 1.27}$	84.15	84.09	79.17	$82.78_{\pm 1.25}$	$85.24_{\pm 0.45}$	$85.59_{\pm 1.41}$	$\underline{\textbf{85.67}}_{\pm 0.34}$
Task-aware										
Liomo 2 7P	RLHF	1.01	$1.04_{\pm 0.04}$	0.66	1.29	1.43	$0.97_{\pm 0.02}$	$1.62_{\pm 0.05}$	$\underline{1.69}_{\pm 0.05}$	$1.32_{\pm 0.05}$
Liailia2-7D	HumanEval	51.27	$51.91_{\pm 1.61}$	54.74	52.23	53.10	$49.85_{\pm 3.17}$	$52.67_{\pm 0.71}$	$\underline{55.09}_{\pm 1.66}$	$50.67_{\pm 1.24}$
Mistral 7D	RLHF	0.99	$1.05_{\pm 0.04}$	0.56	1.31	1.31	$1.15_{\pm 0.06}$	$1.29_{\pm 0.13}$	$1.71_{+0.01}$	$1.35_{\pm 0.07}$
ivitsural-/B	HumanEval	84.27	$83.34_{\pm 2.54}$	86.75	84.81	79.91	$85.51_{\pm 1.28}$	$85.26_{\pm 1.13}$	$\underline{87.35}_{\pm 1.03}$	$84.18_{\pm 1.63}$

Experimental Results

The Effect of the Number of Monte-Carlo Samples: Positive correlation between performance and generated MC samples

Use Your INSTINCT: INSTruction optimization for LLMs using Neural bandits Coupled with Transformers.

Xiaoqiang Lin*, Zhaoxuan Wu*, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low.

ICML 2024.

Motivation

• Few-shot in-context learning

Good instruction is vital to the performance!

Input: pickle, bird, wheel, tree, lizard Input: apple, snake, juice, butterfly Task: taxonomy animal	Find all animals from the list: Input: sweater, octopus, giraffe, orange Output: octopus, giraffe Input: apple, lion, ladder Output: lion Input: pickle, bird, wheel, tree, lizard <u>Prompt</u>	Instruction Examples Test input	ChatGPT
users Corporations LLM users	Ouput: bird, lizard Output from LLM		Claude

Motivation

- Human designed instruction can be costly and not good
- Instruction optimization: Automatically optimize the instructions to obtain the best performance of LLMs

In-context learning

Challenges

Best performing LLMs are black-box models

- ChatGPT, Claude
- Access to black-box LLMs is costly
 - API calls are expensive
 - A query-efficient approach is needed

Formulation: Instruction Optimization

• Objective:

 $\rho^* = \operatorname{argmax}_{\rho} h(\rho)$ $h(\rho) := \mathbb{E}_{(x,y) \in D_V} s(f(\rho, x), y)$

Preliminary - Bayesian Optimization (BO)

- Sequential black-box optimization: find $\ \rho^* = \mathrm{argmax}_{\rho} h(\rho)$
- ullet To choose sequential queries intelligently: $ho_1,\ldots,
 ho_t$
 - Uses a Gaussian process (GP) as a surrogate to model the objective function

Preliminary - Neural Bandits

• Problem with BO:

- GP is not powerful enough to model the LLM performance.
- Objective function $h(\rho)$ is not a simple function
- Solution: Use neural networks neural bandits algorithm
 - Use the neural networks (e.g., transformers) as the surrogate model
 - Can model highly complex functions

INSTINCT Algorithm

- Map a soft prompt $\mathcal{Z}(a \text{ vector in continuous space})$ into instruction
 - \circ Search in the continuous space ho(z)

INSTINCT Algorithm

- Uses the whole Vicuna as surrogate model to leverage the expressive power of transformer: m(g(z); θ)
- Acquisition function from **NeuralUCB** algorithm:

predicted score: $m(g(z); \theta)$ MLP hidden representation: g(z)Freezed

$$z_{t} = \operatorname{argmax}_{z \in Z} \operatorname{NeuralUCB}_{t}(z) \qquad Z$$

NeuralUCB_t(z) := $m(g(z); \theta_{t-1}) + \nu_{t} \sigma_{t-1}(g(z); \theta_{t-1})$
Exploitation Exploration Freezed

INSTINCT Algorithm

Experiments: Instruction Induction

• Given a task-specific training dataset, find the task-specific instruction that best describes the relationship between inputs and outputs

Datasets

O 30 instruction induction tasks curated by [1]

[1] Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. InstructZero: Efficient instruction optimization for black-box large language models. arXiv preprint arXiv:2306.03082, 2023b.

Experiments: Visualizing the Optimization Process

Task description: given a list of shuffled letters, rearrange the letters to form a meaningful word.

Iteration Instruction

Experiments: Visualizing the Optimization Process

Task description: given a sentence and a letter, output the words that start with the letter in the sentence.					
Iteration	Instruction				
A	The instruction was to find a word that could be formed by rearranging the letters of the given word				
В	The instruction was to find the word that the input corresponds to, and output it				
С	The instruction was to output the word that starts with the letter that was inputted				

T

Task des	criptio	on: given a sentence, output the number of objects in
Iter	ation	Instruction
	auon	msuuction
F	4	The instruction was to output the number of items
		that the speaker has, given the list of items that the
		speaker possesses
F	В	The instruction was to output the number of objects
	-	mentioned in the input
C C		The instruction was to output the number of items
		the player has, but the player has entered the num-
		ber of items instead

Task description: translate the words from English to Spanish. Instruction Iteration The instruction was to translate the words from Α Spanish to English The instruction was to translate the words from В English to Spanish С The instruction was to translate the words from English to Spanish

Instructions found by **INSTINCT** improves over iterations

Experiments: Instruction Induction

Task	APE	InstructZero	INSTINCT (ours)
antonyms	0.6367(0.1416)	0.8267(0.0072)	0.8467(0.0027)
auto_categorization	0.2500(0.0094)	0.2567(0.0119)	0.2500(0.0330)
auto_debugging	0.2917(0.0340)	0.3750(0.0000)	0.2917(0.0340)
cause_and_effect	0.5733(0.0891)	0.8133(0.0109)	0.5867(0.0871)
common_concept	0.0691(0.0207)	0.0864(0.0398)	0.2129(0.0019)
diff	0.6733(0.2667)	0.6933(0.2224)	1.0000(0.0000)
informal_to_formal	0.5736(0.0026)	0.5310(0.0024)	0.5534(0.0000)
letters_list	1.0000(0.0000)	0.5900(0.1674)	1.0000(0.0000)
negation	0.7533(0.0109)	0.7767(0.0136)	0.8167(0.0027)
object_counting	0.3633(0.0191)	0.3600(0.0929)	0.3400(0.0698)
odd_one_out	0.6333(0.0144)	0.6133(0.0871)	0.7000(0.0163)
orthography_starts_with	0.4567(0.1477)	0.5067(0.0871)	0.6667(0.0272)
rhymes	0.1567(0.0640)	1.0000(0.0000)	1.0000(0.0000)
second_word_letter	0.7467(0.2028)	0.4333(0.1872)	0.1000(0.0411)
sentence_similarity	0.0000(0.0000)	0.0000(0.0000)	0.1400(0.0047)
sum	0.6733(0.2667)	1.0000(0.0000)	1.0000(0.0000)
synonyms	0.3600(0.0759)	0.2767(0.0925)	0.3067(0.0491)
taxonomy_animal	0.3467(0.2341)	0.7167(0.0838)	0.8567(0.0599)
word_sorting	0.3300(0.0374)	0.3100(0.1143)	0.5133(0.0027)
word_unscrambling	0.4400(0.1389)	0.5500(0.0170)	0.6333(0.0072)
# best-performing tasks	5	5	13
# second-best-performing tasks	5	10	5
average rank	2.25	2.0	1.45

Experiments: Instruction Induction (Summarization Task)

• INSTINCT also performs the best in another commonly used *SAMSum* benchmark dataset

Method	ROUGE-1	ROUGE-2	ROUGE-L
APE	0.32549	0.10308	0.30245
InstructZero	0.32595	0.10528	0.30061
INSTINCT	0.35580	0.13350	0.33600

Experiments: Improving Zero-shot CoT

• A well-known zero-shot instruction for chain-of-thought (CoT) reasoning form [1] is

"Let's think step by step."

• INSTINCT finds better ones:

Method	Dataset	Best Zero-Shot CoT Instruction	Score
Kojima et al. (2022)	GSM8K	Let's think step by step.	0.71797
InstructZero	GSM8K	Let's use the instruction to solve the problem.	0.74299
INSTINCT (ours)	GSM8K	Let's think about it.	0.74526
Kojima et al. (2022)	AQUA-RAT	Let's think step by step.	0.52362
InstructZero	AQUA-RAT	Let's break down the problem.	0.54331
INSTINCT (ours)	AQUA-RAT	I have a new solution.	0.54724
Kojima et al. (2022)	SVAMP	Let's think step by step.	0.7625
InstructZero	SVAMP	Let's use the equation.	0.795
INSTINCT (ours)	SVAMP	Let's use our brains.	0.81

[1] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. In Proc. NeurIPS, 2022.

Conclusion

- We introduce the INSTINCT to optimize task-specific instructions for black-box LLMs
- INSTINCT achieves better performance due to the use of neural-bandits algorithm and the expressive power of the transformer.
- We demonstrate on multiple settings that INSTINCT achieves better performance with the same number of queries.

Prompt Optimization with Human Feedback.

Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low.

ICML 2024, Workshop on Models of Human Feedback for Al Alignment. Selected as Oral

Prompt Optimization

Prompt Optimization

- □ A scoring method may not be available or reliable
 - No validation dataset available
 - A scorer LLM may not be accurate
 - Human is not good at giving a score (Yue et al. 2012)
- Human is more reliable at providing preference feedback (Yue et al. 2012)
- Can we achieve prompt optimization using only human preference feedback?

Prompt Optimization with Human Feedback

Our algorithm - APOHF

- ➤ Using the neural network for latent score prediction
 - $h(x; \theta)$ mapping from prompt to latent score
- Preference feedback model Bradley-Terry-Luce (BTL) model (Hunter et al. 2004)

$$P(\mathbf{x}_1 \succ \mathbf{x}_2) = \sigma(h(\mathbf{x}_1; \theta) - h(\mathbf{x}_2; \theta))$$

Solution Section: Given the previous feedback $D_{t-1} = \{x_{s,1}, x_{s,2}, y_s\}_{s=1...t-1}$, train the NN (*h*) by minimizing the following loss function:

 $\ell(\theta) = -likelihood\left(y, \sigma(h(x_1; \theta) - h(x_2; \theta))\right) + \lambda ||\theta||$

Our algorithm - APOHF

➤ Selection of first prompt:

$$\mathbf{x}_{t,1} = \operatorname*{argmax}_{x} \boldsymbol{h}(\boldsymbol{x}; \boldsymbol{\theta}_{t})$$

Selection of second prompt:

$$\begin{aligned} \mathbf{x}_{t,2} &= \arg\max_{x} \boldsymbol{h}(x; \theta_{t}) + \boldsymbol{\nu} || \nabla \mathbf{h}(x; \theta_{t}) - \nabla \mathbf{h} \big(\mathbf{x}_{t,1}; \theta_{t} \big) ||_{\boldsymbol{V}_{t-1}^{-1}} \\ & \text{Exploitation:} \\ & \text{Score} \\ & \text{prediction} \end{aligned} \\ \begin{aligned} & \text{Exploration: Encourages } \mathbf{x}_{t,2} \text{ to} \\ & \text{be different from the previously} \\ & \text{selected prompts and } \mathbf{x}_{t,1} \end{aligned}$$

(Arun et al. (2025))

Verma, Arun, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. "Neural Dueling Bandits." ICLR 2025

Experiment - Optimization of User Instructions

Task	Iter	Instruction	Score
antonyms	0	add the prefix "un-" to the given words to form their opposites.	0.45
	5	remove the "un-" prefix from each word.	0.45
	10	provide the opposite of the given words.	0.70

Our APOHF consistently and significantly outperforms the other methods.

Experiment - Prompt Optimization for Text-to-Image Generative Models

Our APOHF can efficiently produce images which better align with the image the user has in mind.

Experiment - Response Optimization with Human Feedback The prompt is "Human: What is there to do in Atlantic City?".

Iter	Response	Score
0	There are many activities to do in Atlantic City! You can visit the famous Atlantic City Boardwalk, try your luck at the casinos, enjoy the beach and water activities, shop at the outlets and specialty stores, dine at top-rated restaurants, enjoy live entertainment and nightlife, visit museums and historical sites, and attend events and festivals throughout the year.	81.96
10	There are plenty of things to do in Atlantic City! You can visit the famous boardwalk, try your luck at the casinos, enjoy a show or concert at one of the many entertainment venues, dine at a variety of restaurants, shop at the outlets and specialty stores, relax on the beach, or take a stroll through the historic district. There's something for everyone in Atlantic City!	91.46
20	There are many attractions and activities in Atlantic City, including: 1. Casinos: Atlantic City is known for its many casinos, where you can try your luck at slots, poker, blackjack, and more. 2. Boardwalk: 3. Beach: 4. Steel Pier: 5. Shows and concerts: 6. Nightlife: 7. Dining: 8. Shopping:	180.14

Our APOHF is able to further refine the response of an LLM to make it more preferable for human users.

• Any questions?

