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Data Consumption VS Data Production
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We will run out of data stock here! [1]

[1] Villalobos, P., Ho, A., Sevilla, J., Besiroglu, T., Heim, L., & Hobbhahn, M. (2024, July). Position: Will we run out of data? Limits of LLM scaling based on human-generated
data. ICML 2024.



Data-Efficient Al
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Agenda

Optimizing data at model training:
e FreeShap: Data Attribution for LLM Fine-tuning, ICML 2024
e NICE: Data Attribution for Non-differentiable Metrics, ICML 2025

Optimizing data at model inference:
e [INSTINCT: Black-box Prompt Optimization, ICML 2024
e POHF: Prompt Optimization with Human Feedback, ICML workshop 2024



FreeShap

Helpful or Harmful Data? Fine-tuning-free Shapley Attribution for Explaining Language
Model Predictions.

Jingtan Wang*, Xiaogiang Lin*, Rui Qiao*, Chuan-Sheng Foo, Bryan Kian Hsiang Low.

ICML 2024.



Motivation
The Data Value / Data Contribution

Marginal contribution of i for
the whole dataset

The leave-one-out (LOO)
value of the -th data point:
(~influence function)
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The Shapley value of
the i-th data point:
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Preliminaries

® The harm of the mislabeled data is magnified when the dataset has a smaller
size.
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® The Shapley value is better at detecting mislabeled data because of the
consideration of the smaller subsets.



Motivation: Shapley Value is More Effective

The Shapley Value

® The Shapley value is much better at identifying mislabeled data than LOO

values
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Methodology: Shapley Value is More Robust

® Place the same text sample into different training datasets and evaluate
their instance scores 50
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e Compared with LOO, Shapley value can output helpfulness/harmfulness
consistently

o Usefulness in one dataset is generalizable to other datasets

Text example | Label || Shap | Shapley score | LOO || LOO score
confident filmmaking and a pair of fascinating performances [pos] f| 5+/0- | 0.45+0.23 | 3+/2- || 0.23+1.52
seriously, rent the Disney version [neg] § 5+/0- 1.85+0.72 3+/2- || -0.70+£2.36

it’s not going to be everyone’s bag of popcorn, but it definitely gives you something to chew on’ | [pos] [ 0+/5- | -1.91+0.57 | 3+/2- 0.23+1.34
would fit chan like a $ 99 bargain-basement special [neg] § O+/5- | -0.36+£0.20 | 2+/3- 0.00+1.45




Challenge of SV in Large Models Training

Computational Scalability
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® The naive evaluation of the utility function requires fine-tuning a (large)
pretrained model on the subset, then evaluate the model’s performance.

® Repeated fine-tuning are extremely costly.



Solution
The Empirical “Kernel” Trick
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Prior work: Kernel regression on the eNTK resembles fine-tuning.

[Wei et al., 2022]



FreeShap

Fine-tuning-free Shapley Value

FreeShap amortizes the fine-tuning cost by pre-computing the eNTK
matrix, then calculates the utility terms of the Shapley value using
models obtained from kernel regressions.




FreeShap

Fine-tuning-free Shapley Value
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Efficiency

FreeShap

® FreeShap is significantly faster than other approximated Shapley value

baselines.

Running time (sec)
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Data Curation: Wrong Label Detection

® Poison training set by flipping 10% of data, and then examine the poisoned data by
reviewing data points in the order of their scores from lowest to highest.

® Shapley excels in detecting mislabeled data within datasets.
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Data Selection

® Setting: A train set, a test set for calculating training point scores, and a held-out set
evaluating the selected subsets.

e Sequentially add training data points with the highest scores.

e The higher the performance increase, the better the data curation approach is.

e Shapley value is also effective for data curation when test distribution is unknown.

BERT Llama2

2% 4% 6% 8% 10% ‘ 2% 4% 6% 8% 10%
Shapley 0.1951 | 0.2111 | 0.2148 | 0.2167 | 0.2223 Shapley 0.0816 | 0.1398 | 0.1754 | 0.2186 | 0.2458
Influence | 0.0272 | 0.0647 | 0.0393 | 0.0647 | 0.0750 Influence | -0.0038 | -0.0038 | -0.0038 | -0.0038 | -0.0038
Tracln 0.1370 | 0.1904 | 0.2008 | 0.1548 | 0.1970 TracIn 0.0638 | 0.1144 | 0.1304 | 0.1773 | 0.2092
Representer | 0.1182 | 0.1351 | 0.1388 | 0.0619 | 0.1238 Representer | -0.0019 | 0.0000 | 0.0019 | 0.0066 | 0.0056
Random | 0.1970 | 0.1951 | 0.2073 | 0.2017 | 0.1529 Random | 0.0638 | 0.1041 | 0.1529 | 0.1792 | 0.1951




Summary

® FreeShap provides an efficient and scalable approximation of the Shapley
value.

® FreeShap demonstrates strong capability in mislabeled data detection,
advancing data diagnostics, which can be used to increase model reliability.



NICE

NICE: Non-differentiable Evaluation Metric-based Data Selection for Instruction Tuning.

Jingtan Wang, Xiaoqgiang Lin, Rui Qiao, Pang Wei Koh, Chuan-Sheng Foo, Bryan Kian
Hsiang Low.

ICML 2025.



Motivation

Loss-based influence (Tracln, Influence function, etc.) estimates the effect of each
training data on the validation loss via the gradient of the validation loss.

e Discrepancy Between Loss and Evaluation Metrics
e Reliance on Labeled Validation Data
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NICE: Non-differentiable evaluation
metrics-based InfluenCe Estimation

Instead of using validation loss, we use Ly (2y;0) = Eg, ~#(y|20;0) [T (20, D))

Quantify the influence of including a training point z_i on the a validation point
o8iz v's performance measured by a non-differentiable evaluation metric r

® Code pass rate, math correct rate
® Reward model

Training point’s gradients w.r.t. loss

E
TraCIn IanICE = ZVGL(ZU 0° ’ ]Eji,,~f(y|x,,;98) [_Velog(f(j\’lev; ee))r(zv' yv)])
e=1

Validation point’s policy gradients w.r.t. eval metrics

across checkpoints
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computed w.r.t final checkpoints

Training point’s gradients and Hessians w.r.t. loss
Validation point’s policy gradients w.r.t. eval metrics



NICE: Non-differentiable evaluation
metrics-based InfluenCe Estimation

Approximated via Monte-Carlo Sampling

E

Infyice = Z
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Training point’s gradients w.r.t. loss
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NICE: Non-differentiable evaluation
metrics-based InfluenCe Estimation

- 1
Infurcer = Bg, - r(yixy:05) [~ Vo 108(f Do %03 0F))7 (2, §) | Hyi VoL (z; 6F

computed w.r.t final checkpoints

Training point’s gradients and Hessians w.r.t. loss
Validation point’s policy gradients w.r.t. eval metrics

NICE Preferred training points: Those whose gradient are most similar to the policy
gradients of the validation performance measured by the reward function, i.e.,
those training points can improve the validation performance more

¥ When r does not require the the ground truth label y (reward model which only
needs prompts x_y and generated response \hat{y} v) NICE can output score
without need of validation label!



Generalization to Other Loss-based
Influence Estimation Methods:

Method | AlpacaEval | TLDR | RLHF | HumanEval NICEIF consistently

IF (Datalnf) 11.11 2.01 | 0.83 37.40 outperforms Vanilla

NICEIF 20.44 3.97 | 1.89 39.68 Influence Function




Assisted Monte Carlo

Benefit of Monte-Carlo Sampling used in NICE: Utilizing multiple different responses,
offering diverse guidance. The generated response can be better than the label

response

Limitation: When the model is too weak, the MC samples may not contain

high-quality responses with high rewards

Solution: Assisted Monte Carlo (AMC) uses a model that is better at the target task to

assist generation

E
IanICEAMC = Z ﬁe(
e=1

Assisted generated responses
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Experimental Results

Major Findings:

NICE outperforms the
loss-based influence
estimation.

No labels? No problem! NICE
outperform baselines that
utilize the label response.
Less is more: subset
outperforms the full dataset.
Assisted monte-carlo
sampling can boost data
selection when the size of
training data is large
(task-agnostic setting).

Model & Dataset Full Random RDS BM25 DSIR TSDS LESS NICE NICEAMC

Task-agnostic
AlpacaEval 2259 16.1341.18 1470 19.60 20.27 17.404244 26944037 @ 27.614213 30.45.,,

Llama2-7B TLDR 2.40 1~80i0.08 2.08 2.15 1.53 2.19i()‘29 3.371029 &:{:0.78 miﬂAO
RLHF 2.31 2.0540.11 1.87 2.83 2.57 1.0140.12 1.4410.07 2.8210.10 3.03. 02
HumanEval 47.44 44-30i236 45.29 46.19 42.22 43-68iL82 47.503:1‘57 48'59;|:2.08 45.10:}:234
AlpacaEval 33.77 24-9914.28 21.70 28.47 29.31 35.84i()‘53 41-09i1A56 41~43d:3.00 47'40i2,94

Mistral.78 LEPR 279 3.061024 290 241 348 3281041 4401012 4.80,015 4594020
RLHF 2.56  2.1310.04 1.78 2.88 2.94 1.83410.15 1.700.09 3.1040.06 3.42. 5
HumanEval 83.63 85.561+127 84.15 84.09 79.17 82.7841125 85.244045 @ 85.59:;4; 85.67. (34

Task-aware

Llamp2igs 101 1.041004 0.66 129 143 0971002 1.62:005 1.69.005 1324005
HumanEval 5127 51914161 5474 5223 5310 49.854317 52.67+071  55.09.,6 50.67+1.24

Mistral-7B RLHF 0.99 1.0540.04 0.56 1.31 1.31 1.1540.06 1.2940.13 1.71 .01 1.35, .07
HumanEval 84.27 83.341254 86.75 84.81 7991 85.514128 85.2641.13 87.35.,,3 84.181163




Experimental Results

The Effect of the Number of Monte-Carlo Samples: Positive correlation between

performance and generated MC samples
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INSTINCT

Use Your INSTINCT: INSTruction optimization for LLMs using Neural bandits Coupled with
Transformers.

Xiaogiang Lin*, Zhaoxuan Wu*, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng,
Patrick Jaillet, Bryan Kian Hsiang Low.

ICML 2024.



Motivation

Good instruction is vital to the performance!
® Few-shot in-context learning

Input: pickle, bird, wheel, tree, lizard Find .aII animals from the list: Instruction
Input: apple, snake, juice, butterfly input: sweater, octopus, girarie,
orange
. . Output: octopus, giraffe Examples
Task: taxonomy animal Input: apple, lion. ladder
Output: lion
(Q \ Input: pickle, bird, wheel, tree, lizard Test input ChatGPT\
Individual Prompt %
users p .
> ﬂégaude{%
Corporations <
LLM users Ouput: bird, lizard LLM providers
\ ) Output from LLM \ J




Motivation

® Human designed instruction can be costly and not good

® |nstruction optimization: Automatically optimize the instructions to

obtain the best performance of LLMs

In-context learning

Find all animals from the list:

Input: pickle, bird, wheel, tree, lizard

Prompt

%

\LLM rovider

v
ChatG PT\
%@Iaude\%

s/

Instruction
Test input



Challenges

® Best performing LLMs are black-box models
O ChatGPT, Claude

® Access to black-box LLMs is costly

O API calls are expensive

O A query-efficient approach is needed



Formulation: Instruction Optimization

® Objective:

£3

Individual
users

Corporations
LLM users

Instruction ]p f

oSttt ChatGPT

N | 3y
/rClaude _E

Ouput: bird, lizard
Output from LLM

LLM providers

= argmax ,h(p)

h(p) ‘= E(w,y)EDVS<f(p7 x)ay)



Preliminary - Bayesian Optimization (BO)

® Sequential black-box optimization: find ,0* = argmaxph(p)

® To choose sequential queries intelligently: P01, - .-, Ot

O Uses a Gaussian process (GP) as a surrogate to model the objective function



Preliminary - Neural Bandits

® Problem with BO:
O GP is not powerful enough to model the LLM performance.
O Objective function A(Q) is not a simple function

® Solution: Use neural networks — neural bandits algorithm

O Use the neural networks (e.g., transformers) as the surrogate model

O Can model highly complex functions



I N STI N CT AI g o) rith m generated instruction: p(z)

® Map a soft prompt Z(a vector in continuous space) into
instruction

O Search in the continuous space p(z)

soft prompt




predicted score: m(g(z); 0)

f
INSTINCT Algorithm M;P

® Uses the whole Vicuna as surrogate model to leverage the hidden representation: g(z)

expressive power of transformer: m(g(2);0)

® Acquisition function from NeuralUCB algorithm:

Freezed

z; = argmax,. ,NeuralUCB,(2) Z

NeuralUCB,(2) :—! (g(z)zb’t 1)+ o1 (g(2); 0,1

Exploitation Exploration




INSTINCT Algorithm

; m(g(z); 0,_
) = LR p(2) 4= argasNewralls, 2

(9(z1),hy) -
y hidden
; representation white-box LLM w
(9(Ze1), hey) Z = 9(%)
T A validation input |
: truct |
S LT
output
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Experiments: Instruction Induction

® Given a task-specific training dataset, find the task-specific instruction that best describes the relationship

between inputs and outputs

® Datasets

O 30 instruction induction tasks curated by [1]

[1] Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. InstructZero: Efficient instruction optimization for black-box large language models. arXiv preprint arXiv:2306.03082, 2023b.



Experiments: Visualizing the Optimization
Process

word_unscrambling Task description: given a list of shuffled letters, rearrange the letters

0.6 to form a meaningful word.
> Iteration | Instruction
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Experiments: Visualizing the Optimization
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Task description: given a sentence and a letter, output the words

that start with the letter in the sentence.
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Tteration | Instruction
A The instruction was to output the number of items
that the speaker has, given the list of items that the
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Task description: translate the words from English to Spanish.

Iteration | Instruction
A The instruction was to translate the words from
Spanish to English
B The instruction was to translate the words from
English to Spanish
C The instruction was to translate the words from

English to Spanish

Instructions found by
INSTINCT improves
over iterations




Experiments: Instruction

Induction

Task APE InstructZero = INSTINCT (ours)
antonyms 0.6367(0.1416)  0.8267(0.0072) 0.8467(0.0027)
auto_categorization 0.2500(0.0094)  0.2567(0.0119) 0.2500(0.0330)
auto_debugging 0.2917(0.0340)  0.3750(0.0000) 0.2917(0.0340)
cause_and_effect 0.5733(0.0891)  0.8133(0.0109) 0.5867(0.0871)
common_concept 0.0691(0.0207)  0.0864(0.0398) 0.2129(0.0019)
diff 0.6733(0.2667)  0.6933(0.2224) 1.0000(0.0000)
informal_to_formal 0.5736(0.0026) 0.5310(0.0024) 0.5534(0.0000)
letters_list 1.0000(0.0000) 0.5900(0.1674) 1.0000(0.0000)
negation 0.7533(0.0109)  0.7767(0.0136) 0.8167(0.0027)
object_counting 0.3633(0.0191) 0.3600(0.0929) 0.3400(0.0698)
odd_one_out 0.6333(0.0144)  0.6133(0.0871) 0.7000(0.0163)
orthography_starts_with 0.4567(0.1477)  0.5067(0.0871) 0.6667(0.0272)
rhymes 0.1567(0.0640)  1.0000(0.0000) 1.0000(0.0000)
second_word_letter 0.7467(0.2028) 0.4333(0.1872) 0.1000(0.0411)
sentence_similarity 0.0000(0.0000)  0.0000(0.0000) 0.1400(0.0047)
sum 0.6733(0.2667)  1.0000(0.0000) 1.0000(0.0000)
synonyms 0.3600(0.0759) 0.2767(0.0925) 0.3067(0.0491)
taxonomy_animal 0.3467(0.2341)  0.7167(0.0838) 0.8567(0.0599)
word_sorting 0.3300(0.0374)  0.3100(0.1143) 0.5133(0.0027)
word_unscrambling 0.4400(0.1389)  0.5500(0.0170) 0.6333(0.0072)
# best-performing tasks 5 5 13

# second-best-performing tasks 5 10 5
average rank 2.25 2.0 1.45

40



Experiments: Instruction Induction
(Summarization Task)

® INSTINCT also performs the best in another commonly used SAMSum benchmark dataset

Method ROUGE-1 ROUGE-2 ROUGE-L

APE 0.32549 0.10308 0.30245
InstructZero 0.32595 0.10528 0.30061
INSTINCT 0.35580 0.13350 0.33600




Experiments: Improving Zero-shot CoT

® A well-known zero-shot instruction for chain-of-thought (CoT) reasoning form [1] is

® INSTINCT finds better ones:

D

“Let’s think step by step.”

Method Dataset Best Zero-Shot CoT Instruction Score
Kojima et al. (2022) GSMSK Let’s think step by step. 0.71797
InstructZero GSMSK Let’s use the instruction to solve the problem. | 0.74299
INSTINCT (ours) GSM8K | Let’s think about it. | 0.74526
Kojima et al. (2022) | AQUA-RAT Let’s think step by step. 0.52362
InstructZero AQUA-RAT Let’s break down the problem. 0.54331
INSTINCT (ours) | AQUA-RAT | Ihave a new solution. | 0.54724
Kojima et al. (2022) SVAMP Let’s think step by step. 0.7625

InstructZero SVAMP Let’s use the equation. 0.795

INSTINCT (ours) SVAMP | Let’s use our brains. | 0.81

[1] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. In Proc. NeurlPS, 2022.



Conclusion

® We introduce the INSTINCT to optimize task-specific instructions for black-box LLMs

® |NSTINCT achieves better performance due to the use of neural-bandits algorithm and the expressive power of

the transformer.

® \We demonstrate on multiple settings that INSTINCT achieves better performance with the same number of
queries.



POHF

Prompt Optimization with Human Feedback.

Xiaogiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, Bryan Kian
Hsiang Low.

ICML 2024, Workshop on Models of Human Feedback for Al Alignment. Selected as Oral



Prompt Optimization

rompt
m d L™
-
response
Prompt 1 Response 1 0.98
Scoring @ Best prompt!
method
Prompt 2 m » Response 2 » 0.72
[Chen et al. (2023);
men mus Lin et al. (2024); "
Yang et al. (2024)]
Prompt N

Response N 0.81



Prompt Optimization

A scoring method may not be available or reliable

= No validation dataset available
= A scorer LLM may not be accurate
= Human is not good at giving a score (Yue et al. 2012)

Human is more reliable at providing preference feedback (Yue
et al. 2012)

Can we achieve prompt optimization using only human
preference feedback?



Prompt Optimization with Human Feedback

Initial task description

APOHF

Preference
A A feedback
Promﬁﬁ\Pr‘ompt 2
Response 1
Response 2 LLM




Our algorithm - APOHF

> Using the neural network for latent score prediction
= h(x;68) mapping from prompt to latent score

> Preference feedback model - Bradley-Terry-Luce (BTL) model
(Hunter et al. 2004)
P(Xy > x3) = a(h(xy;0) — h(x;; 0))

> Given the previous feedback D,_; = {x,1,%52,¥5} _, ,_,, trainthe
NN (h) by minimizing the following loss function:

2(0) = —likelihood (y, o (h(x1; 0) — h(xy; 9))) + 10|



Our algorithm - APOHF

» Selection of first prompt:

X¢1 = argmax h(x; 0,)
X

> Selection of second prompt:
X¢z = argm3x|h(x; 0.)[+ IVh(x; 6,) — Vh(x,; 6,)] 'VL-&'

Exploitation:  Exploration: Encourages x; ; to
Score be different from the previously
prediction selected prompts and x, ;

(Arun et al. (2025))
Verma, Arun, Zhongxiang Dai, Xiaogiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. “Neural Dueling Bandits.” ICLR 2025




Experiment - Optimization of User
Instructions

o Task Iter Instruction Score
0.65 1 @’”6 * 0’/0 @ 0 add the prefix "un-" to the given words to form 0.45
oo ,~ N R Q- g e —— their opposites. )
i ,6 T Y 5 | remove the "un-" prefix from each word. 0.45
0.6071 v é;'f 10 | provide the opposite of the given words. 0.70
] 1/
/ /i
II Y- B‘
0.55 @,r'é B oy
A' 'I?_'fl iB‘\ A \m
o Rl
0.50 1 , , , ,
0 25 50 75 100 1 I i1
& Porafions Our APOHF consistently and significantly
= fandom “A DoubleTs outperforms the other methods.

-©- Linear Dueling Bandits -4~ APOHF



Experiment - Prompt Optimization for
Text-to-Image Generative Models

Ground Truth Iteration 0 Iteration 10 Iteration 20 Iteration 30

Garden
B "@é—@@-@

3% il

_
o
o
of e—hma

Ou»r APOHF can eff|C|entIy produce images which
better align with the image the user has in mind.



Experiment - Response Optimization with

Human Feedback
The prompt is “Human: What is there to do in Atlantic City?”.

Iter Response Score

There are many activities to do in Atlantic City! You
can visit the famous Atlantic City Boardwalk, try your I

luck at the casinos, enjoy the beach and water activities, O u r APO H F IS ab I e to fu rt h er
0 | shop at the outlets and specialty stores, dine at top-rated | 81.96

restaurants, enjoy live entertainment and nightlife, visit refl ne th e res po nse Of an L L M

museums and historical sites, and attend events and

festivals throughont the year to make it more preferable for

There are plenty of things to do in Atlantic City! You
can visit the famous boardwalk, try your luck at the human users.
casinos, enjoy a show or concert at one of the many
10 | entertainment venues, dine at a variety of restaurants, | 91.46

shop at the outlets and specialty stores, relax on the 60 -
beach, or take a stroll through the historic district. There’s o000
something for everyone in Atlantic City! =Y

Response Optimization

There are many attractions and activities in Atlantic City,
including:

1. Casinos: Atlantic City is known for its many casinos,
20 | where you can try your luck at slots, poker, blackjack, and | 180.14
more. 2. Boardwalk: ... 3. Beach: .. 4. Steel Pier: ... 5.
Shows and concerts: ... 6. Nightlife: ... 7. Dining: ... 8. 0 50 100 150

Shopping: ... # Iterations

-E Random -#- DoubleTS
-©- Linear Dueling Bandits ¢~ APOHF



Q&A

* Any questions?



THANK YOU



